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We consider an environment of geographically distributed message sources which communicate with each

other over a ''common' broadcast channel of fixed total capacity.

This geographic dispersion along

with the random generation times for messages creates a difficult channel resource-sharing problem.
In this paper we discuss the performance degradation resulting from this problem, present known results

for various multi-access schemes,

define a measure of the '"effective' number of users,

demonstrate that

"mixing'" of access schemes cannot provide an improvement, introduce and analyze an effective dynamic
reservation control access method, and finally present graphs showing the delay-throughput performance
profiles in a fashion which displays the effect of the key system parameters.

1. INTRODUCTION

The technological advances which have provided remote
access to computing facilities have also given rise
to the technological problems of multi-access comput-
er communications. Not only are we faced with analyt-
ic queueing problems arising from unpredictable mes-
sage generation times and lengths, but we are also
faced with the nasty issue of allocating a communica-
tions resource to a geographically distributed set of
message sources. Were we not in this distributed en-
vironment, then queueing theory would provide us with
the ultimate delay-throughput performance profiles;
however, we have an additional loss due to the cost
of organizing the separated sources into some kind of
cooperating queue which permits intelligent access to
the available channel bandwidth.

We consider an environment of M buffered message
sources which are to share a communication channel of
capacity C bits per second. Assume that the mth ter-
minal (m=1,2,...,M) generates fixed length packets
(of length b bits) according to a Poisson process at
a rate Ay messages per second. Thus the load placed
upon the channel by this source is simply Ayb/C which
we define to be Sy. The total normalized throughput
may be expressed as S=1Sp. In queueing theory nota-
tion we have S=p=Ab/C, the utilization factor of the
system, where A=IAp.

We must now characterize the geographical distribution
of these message sources. To simplify our task for
purposes of analysis, we shall assume that we are in

a packet switching broadcast radio communication en-
vironment where all terminals are separated by a prop-
agation delay of d seconds which, when normalized,
gives rise to the relative propagation delay a=d/(b/C).
We have now characterized. the distributed computer
communications problem in terms of the following pa-
rameters: M, {Sp}, S, and a. We are interested in
evaluating the loss and performance capabilities of
this system. Consider two important limiting cases.
Specifically, if a=0, or if M=1, then we no longer
have a distributed problem and the cost of creating a
common queue disappears. Except for these two limit-
ing cases (and the degenerate cases where all but one
of the S 's go to zero) we are faced with some loss in
communications capacity which must be devoted to or-
ganizing the sources into a cooperative queueing struc-
ture. It is our goal to characterize the loss in the
delay-throughput performance due to this distribution,
and also to demonstrate an achievable performance pro-
file in terms of a reduced set of system parameters.

*This resedrch was supported by the Advanced Research
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2. THE UNAVOIDABLE PRICE

As with most contention systems two factors contribute
to a degradation in performance: first, there are the
usual queueing effects due to the random nature of the
message generation process; second, there is the cost
due to the fact that our message sources are geograph-
ically distributed. If all the terminals were co-lo-
cated (i.e., communications among them were free and
instantaneous) then we could form a common queue of
the generated message packets and achieve the optimum
delay-throughput profile, namely, that of the M/D/1
queueing system [1] with a message input rate A and a
constant service time b/C seconds. Unfortunately we
have M terminals which are distributed at a mutual
normalized distance a and which independently generate
messages. The total capacity we have available is C
bits per second and we are faced with controlling ac-
cess to this channel from these distributed message
sources in which the control information must pass
over the same channel which is being controlled (or
over a control sub-channel which is derived from the
data channel).

We have a spectrum of choices for introducing this con-
trol, ranging from no control at all to extremely tight
static or dynamic control. For example, we could

allow the terminals to access the channel using PURE
(i.e., unslotted) ALOHA in which a terminal transmits

a packet as soon as it is generated hoping that it will
not collide with any other packet transmission; if
there is a collision, then all packets involved in that
collision are '"destroyed" and must be retransmitted
later at some randomly chosen time. This uncontrolled
scheme is extremely simple, involves no control func-
tion or hardware, but extracts a price from the system
in the form of wasted channel capacity due to colli-
sions. At the other extreme, we could have a very
next section) where each terminal is assigned a sub-
channel derived from the original channel. Such a
fixed control scheme certainly avoids any collisions
but is inefficient for two reasons: first, because
terminals tend to be bursty sources and therefore much
of their permanently assigned capacity will be wasted
due to their high peak-to-average ratio; and second,
the response time will be far worse in this channelized
case due to the scaling effect which is especially
apparent in FDMA (see [2]). A dynamic control scheme
such as reservation-TDMA [3] (or Roberts' Reservation
Scheme [4]) makes use of a reservation sub-channel
through which terminals place requests for reserved
space on the data channel; this system permits dynamic
allocation of channel capacity according to a termi~
nal's demand, but requires overhead in order to set up
these reservations.

Thus we see that the issue of allocating capacity in a
distributed environment is a serious one. In one form
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or another nature will extract her price! This price
will appear in the form of collisions due to poor or
no control, wasted capacity due to rigid fixed con-
trol, or overhead due to dynamic control. These com-
ments are summarized in table 1 below.

Table 1: The price for distributed sources
COLLISIONS |IDLE CAPACITY | OVERHEAD

No Control . .
(c.g. ALOHA) VES NO NO
Static Céntrol
(e.g. FDMA) NO YES NO
Dynamic Control
(e.g. Reserva- NO NO YES
tion Systems)

We note that as M, the number of terminals, grows and
as the geographical separation a grows, then also
grows the price we pay for distribution. Given such
a distributed terminal environment it would be inter-
esting to determine exactly what is the minimum price
in delay and throughput one must pay no matter what
the access scheme; as yet no such result is known.
Rather than such a lower bound, in this paper we pro-
vide an upper bound on the price one must pay.

3. A FAMILY OF MULTI-ACCESS METHODS

Multi-access methods have been evaluated in the past
for distributed computer-communication systems. In
this section we present the known results for a vari-
ety of these. We define T(S) to be the average time
from when a packet is generated until it is success-
fully received. We are mainly concerned with the way
in which the normalized* average response time T(S)
varies with the overall system load S. It is perhaps
best to think of all terminals transmitting to a cen-
tral station which is the destination for these trans-
missions (this is not a necessary assumption since
point-to-point communication also fits this model).

S is the total system load which also represents the
efficiency of channel use (as S+1, then useful data
on the channel is being delivered at a rate of C bits
per second; we neglect packet header overhead).

We now consider eight random multi-access schemes,
and for each we give a reference and an extremely
concise definition:

PURE (UNSLOTTED) ALOHA [5]: a newly generated packet
will be transmitted by its terminal at the instant
of its gemeration; collided packets destroy each
other and must be retransmitted.

SLOTTED ALOHA [6,7]: ‘the same as PURE ALOHA except
that new packet transmissions must begin at the
next slot point, where time is slotted into lengths
equal to a packet transmission time.

CSMA (Carrier Sense Multiple Access) [6,8]: same as
PURE ALOHA except that a terminal senses (listens
to) the channel and can hear the carrier of any
other terminal's transmission; if such a carrier is
detected, then the terminal refrains from transmit-
ting and follows one of many defined protocols.

POLLING [9]: a central controller sends a 'polling
message'' to each terminal in turn; when a terminal
is polled, it empties all of its data before indi-
cating its empty buffer condition whereupon the
next terminal is polled in sequence.

FDMA (Frequency Division Multiple Access) [9]: the
bandwidth of the channel is divided into M equal
sub-channels, each reserved for one of the M
terminals.

TDMA (Time Division Multiple Access) [9]: time is
slotted and a periodic sequence of the M integers
is detined such that when a terminal's number is
assigned to a slot, then that terminal (and only
that terminal) may transmit in that slot; typically

T(S) is expressed in packet transmission times for a

data channel whose capacity is C. That is, T(S) is

normalized with respect to b/C seconds. Further,
since all access methods require d seconds for propa-
gation, we omit this additional delay term from all
of our expressions. Thus T(S) = [T,(S)-d]C/b, where

Tu(S) is the unnormalized average response time.

each terminal is given one out of every M slots.

MSAP (Mini-Slotted Alternating Priority [10]: a
carrier-sense version of polling whereby a polling
sequence is defined and when a terminal's buffer is
empty, it simply refrains from transmitting; after
a (normalized) time units, the next terminal in
sequence senses the channel idle and proceeds with
its transmission, etc. (This is also known as hub
go-ahead polling.)

M/D/1 [1]: the classic first-come-first-serve single-
server queueing system with Poisson arrivals and
constant service time equal to a packet transmission
time.

Of these eight previously studied schemes, the first
three have rather complicated analytic expressions
representing the delay-throughput performance. An
approximation to their behavior will be given in sec-
tion 4. For the others, we have the simple analytic
expressions as follows (we assume Syp=S/M) :

Tporr(® = E%i§§7'+ %‘(l - %)[1 * @lﬁié;g[ﬂll](s.l)
Tepua(®) = M[f%%§§7] o
Troma(S) = 1+ ME’ * Z(TSST] )
Tusap (8) = Tz“%’i“%)“ * %(l - %)(1 * %s”) (3.4
Tu/py108) = 2%‘%‘5)” (3.5
where ty is the time to transmit a polling message.

We note immediately that Tygap(S)sTpop(S) and so we
will no longer consider polling in this discussion.

4. A THREE-PARAMETER APPROXIMATION

From the previous section we see that FDMA, TDMA and
M/D/1 may all be approximated by delay functions of
the form
Z-S

) = A gg (4.1)
Here Z is the zero of the function, P is the pole of
the function and A is a scalar multiplier. We require
the following conditions: AZ/P>0; Z>P or Z<0; 0<P<l.
It also turns out that MSAP is very nicely approximat-
ed by this function as long as S<<M. For these ac-
cess schemes we have:

ACCESS METHOD| A z P
FDMA M/2 2 1
TDMA 1 (2+M) /2 1

M/D/1 1/2 2 1
MSAP (a+1)/2 | [2+a(M+1)]/(1+a) | 1

For analytic comparisons we may also express the ALOHA
and CSMA access schemes by the (ZAP) approximation
given above in eq. 4.1.. For these three contention
schemes we find the parameters A, Z and P as follows:
first, we fit the pole of the function, thereby deter-
mining P; then we fit the value of the function at S=0,
and last, in an ad-hoc fashion we fit the value of the
function at some intermediate value of S in the vicin-
ity of $=P/2. This third calculation permits us to
modify the shape of the function, giving a rather nice
approximation to many of the access schemes of inter-
est.

In figs. 4.1, 4.2 and 4.3 below, we show the results
of applying eq. 4.1 to seven access schemes for the
cases M=10, M=100 and M=1000, respectively.

5. THE EFFECTIVE NUMBER OF USERS

As was pointed out in the author's previous paper at
this Congress [2], there is a significant scaling ef-
fect for the response time in queueing systems. It
states that if we had M systems, each with an input
rate S/M and each with capacity C/M (with packet
lengths of b bits) then a single system handling the
total input rate S and with the total capacity C (a-
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gain with packets of length b bits) would have an av-
erage (unnormalized) response time T equal to 1/M that
of each of the original systems. Another way to view
this is to recognize that an FDMA access scheme serv-
ing M equal rate terminals will have an average re-
sponse time which is M times as bad as a single M/D/1
system serving the entire population. Therefore it
is natural for us to consider the ratio of the re-
sponse time of a given access scheme and the response
time which could be achieved in an M/D/1 system, to
be a measure of the "effective number' of terminals
in the system. Thus we define

NG
eff

I S 5.1
Tyypy168)

where T,(S) is the mean response time for access me-
thod x. When x=FDMA and Sp=S/M, then Mgeg=M. Howe-
ver, it should be clear that if the source rates were
extremely unbalanced (say S3=S-(M-1)e, and Sp=Sz=...
=SyFe) then, as €»0 we expect the system to behave as
if there were only one terminal transmitting data.
Our access scheme should take advantage of this fact.
A natural way to allocate the total chanmnel capacity
C in this case of non-uniform source rates is to op-
timize each capacity so as to minimize the average
delay; this exact problem was handled in [11] and the
solution is simply the well-known ''square root chan-
nel capacity assignment.' Thus, with this optimum
capacity assignment and for a given set M, {Sy}, S,
a8, we find that M_X. (the optimized M_p¢) gives rise
to a realistic performance measure and therefore an
effective number of users given by

A Sm ’
1 x = 3 ma
Meff mEi v 3 (optimized FDMA) (5.2)

Thus we are able to reduce the four-variable system
description given in section 1 to a three-variable
description M_%., S, a, in which the first two vari-
ables of the original have merged into Me%f' Our
problem is now reduced to evaluating the loss and per-
formance of multi-access computer communications in the
face of a number of users equal to Me%f which totally
contribute a load S and which are geographically dis-
tributed at a '"distance'" a. Due to this simplifica-
tion, we may, for the remainder of this paper, assume
that the total load S is uniformly distributed among

a number of users equal to Mgge=M; we will continue to
study the ratio Tx(s)/TM/D/l(S) below.

6. MIXED ACCESS SCHEMES ARE NO GOOD

It is clear from figs. 4.1, 4.2 and 4.3 that for any
given values of M, S, and a, there exists a best lower
envelope along which the system could operate. We
notice the sharp corners in this lower envelope which
occur at the point where two competing access schemes
intersect. One wonders if there is a method by which
the two competing access schemes in the vicinity of
this corner can share the load in some fashion so as
to produce a performance which beats each one individ-
ually. Such is the subject of this section.

Let us consider any two access schemes which have
delay-throughput functions that are nondecreasing
functions of their arguments, that is

0 =T (8) = Tx(Sz) for 8, <8 (6.1)

2
We will assume that T7(0)>T(0) and P1>P2. For exam~
ple, T; might represent the TDMA curve, whereas T,
might represent the SLOTTED ALOHA curve in fig. 4.1.
Let us assume that we are operating at a load of value
S=Ab/C on the curve Ty. Let us now introduce the "oB
mix." What this mix accomplishes is to take a frac-
tion o of the input traffic and a fraction 8 of the
system capacity away from the first system and load it
onto the second system, hopefully giving an improved
performance. This means that the first system will be
operating at a load Sy=[A(1-2)b]/[C(1-8)] and that the
second system will be operating at a load Sp=iab/CB.
That is, Sy=(1-0)S/(1-8) and Sp=0S/8. In effect, what
we have created are two subchannels, each handling a
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portion of the traffic and being allocated a portion
of the capacity. For such a system, it is natural to
define the response time as the appropriately weighted
average of these two systems, where the weighting fac-
tor is proportional to the fraction of traffic which
is handled by each. Moreover, we must be sure to re-
normalize the slot size to account for the change in
channel capacity. That is, we define

T, (S)) + T (5,) (6.2)

The question immediately arises as to what are the
proper choices for a and B in the range O<as<l, 0<Bsl.
For example, it is clear that at S$=0, we must have the
values o=R=1 yielding the minimum value Ty, 1(0)=T(0).
Similarly, one should not be surprised if the optlmum
solution for a and B forces one to lie along a given
access curve for a range of load values. What is not
clear is whether there is a non-degenerate mix (i.e.,
0<a<l, 0<PR<1) over some range of load values which
gives performance superior to either of the two access
methods alone. The answer is that such a range does
not exist as we now prove.

THEOREM. The of mix cannot improve the delay-

throughput performance.

Proof: Let Q be the value of throughput at which the
two access schemes have the same delay; that is

T,(8) < T,(S) $<Q (6.3)
T,(8) = T,(8)  $=Q (6.4)
T,(S) = T,(S)  §=Q (6.5)

We are assuming that the two curves cross only once.
If they cross more than once, the following argument
may be repeated in each region and so our assumption
costs us no loss in generality.

Our proof proceeds by assuming that mixing is good;
we then show that this leads to a contradiction. We
have two cases: S<Q and S>Q.

Case 1 S<Q: If mixing is good, then there must be
some values for a,B (0<a<l, 0<B<1l) such that

1-a o o
B(s) 8 T ( s > + E-T2<E-S) < TZ{SJ (6.6)
Now, if a/f>1, then (a/B)T(0S/B)2To(S) by eq. 6.1
which contradicts eq. 6.6. Therefore a/Bsl which

implies that (1-a)/(1-8)21. Therefore, by eqs. 6.1
and 6.3 we have

1-a 1 o
which also contradicts eq. 6.6.
gives no improvement for S<Q.

Case 2 S>Q: If mixing is good, then there must be
some values for o,B (0<a<l, 0<B<1) such that

1-0 o (¢} .
T,e(S) = 1 B T <1 - ) + E—T (E-s> < T, (8) (6.7

Now, if (l-a)/(1-B)>1, then

Therefore mixing

1 B T Eer) % g _T (S) by

eq. 6.1 which contradicts eq. 6.7¢ Therefore
(1-a)/(1-B)<1 which implies that «/Bz1. Therefore
by eqs. 6.1 and 6.5 we have

o3 o
E-TZ(E~S) > T,(8) > T,(S)

which also contradicts eq. 6.7.
gives no improvement for S>Q.

Therefore mixing
Q.E.D.

7. A DYNAMIC RESERVATION SCHEME

We note from fig. 4.1 that the three contention schemes
(ALOHA and CSMA) perform miserably as S»>1. The limit-

ing behavior for M as given in eq. 5.1 for the three
schemes, FDMA, TDMA and MSAP is shown in the following

table (recall that we now assume S;=S/M):

FDMA_ | TDMA MSAP
1+(M-1)a

lim M

51 eff M M

0f course, the optimum value for Mggg is 1; FDMA and
TDMA do poorly in this regard. MSAP also performs
poorly in the case where Ma>>1; however, the more usu-
al case is Ma<l and so MSAP is not bad in the heavy
traffic case. Nevertheless, it would be nice to de-
sign an access scheme which performed well in heavy
traffic and which did not depend critically on the
distribution parameter a. We define such an access
method in this section.

Let us consider a dynamic control scheme based on
reservations (not unlike Roberts' reservation scheme
[4]). Assume that the total capacity C is divided in-
to a request channel of capacity Cp and a data channel
of capacity Cp such that Cp+Cp=C. We assume that
before a terminal transmits any data, it must send a
short control message over the channel for the purpose
of placing a reservation on the data channel. The
scheme we describe is not meant to be a practical
scheme (although it could certainly be implemented),
but rather to illustrate that dynamic control schemes
do exist which have rather efficient behavior in the
heavy traffic case. The request channel can operate
under any access method; for purposes of this paper,
we shall assume that the request capacity Cgp is uti-
lized among the M terminals in a simple TDMA fashion,
thereby removing all contention effects. That is, each
terminal is provided a private TDMA channel of capacity
Cr/M. We further assume that both the request channel
and the data channel are broadcast channels in the
sense that all terminals can hear all transmissions
When an idle terminal generates a packet, it first
sends a request over the request channel. This
request need be only one bit long, since activity on
the channel itself identifies the terminal making the
request; therefore, the average time required to
transmit this one- blt request is 51mp1y xg=(M+2)/2Cp
seconds. Once the request is heard by all terminals,
then it is known that this terminal has some data to
send. Service on the data channel is given in a first-
come-first-serve fashion, where the arrival time for a
given terminal is defined to be the instant when its
one-bit request is first heard on the request channel.
So long as a terminal has not emptied its buffer, then
its reservation status in the data channel queue is
maintained in the sense that no new requests need be
made until its buffer empties (as signalled perhaps by
a bit in the last packet it transmits).

Let us calculate Sgy, the load placed by the mth ter-
minal on the request channel. Let g be the average
time a terminal maintains its reserved status on the
data channel. Using a simple approximation, it can be
shown that g>gL=)(b/CD)2/[2(1 Sp) 1 where Sp=SC/Cp is
the load on the data channel. Once a terminal goes
idle, the average time until it generates a new

packet is M/A seconds. Thus the average cycle time
between requests on the request channel from a given
terminal is (M+2)/2Cp+g+M/A. Finally, Spy is simply
the request bit transmission time (M/CR) divided by
the average cycle time. The cycle time may be bound-
ed from below by using gzgy, (M+2)/2Cp+M/A20 and Sp<l
to give the upper bound Spy<2AM(1-Sp)/CgpSp. We

denote this upper bound by o82AM(1- bD)/LRbD (We have
"justified'" the expression for o by bounding Sp,, but
we could just as easily have pulled this definition
"out of a hat.") Since C=Cp+Cp, Sp=SC/Cp and S=Ab/C,

we have -
_ ob+2ZSM ]
= Copear (7.1
and therefore o - C.2M(1—Sl .
R~ ob+2M (7.2)

From this last equation, we see the effect we were
hoping for, namely, that the request channel capacity
drops to zero as S=1, thereby permitting the full
capacity C to be used for the data channel in this
heavy traffic case.

The average delay experienced by a packet can be shown
to be the sum of the "set-up time'" (i.e., the time to
make the reservation over the request channel including
an extra propagation delay of a normalized seconds)
plus a regular queueing delay in an M/D/1 queueing
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system [10]. This second term is independent of the
order of service due to the conservation law for
queueing systems [6]. Thus our normalized response
time is TDYN(S)=(M+2)C/2bCR+{2_SD)C/[ZCD(lnSD)]+a.
If we now use eqs. 7.1 and 7.2, and the expression
Sp=SC/Cp, we obtain
(s) = 1 [Gb+2M>{j(M+2) . (2-8)0b+2MS
2(1-8)\ ob 2M ob+2MS

Let us now optimize the value of o in the heavy traffic
case. Factoring out the denominator term 2(1-S) and
eyvaluating the remainder as S»1, we have
L1y (1_8) Ty (S)=1+2M/0b+o (M+2) /2Me (M+2) /b, If we
i%ferentiate this last expression, we find that the
optimum value of ¢ which minimizes Tpyy(S) at heavy
traffic is OOPT=2MA/€TM+2). This value may now be
substituted back into eq. 7.3 to yield the performance
of our dynamic scheme for all S as given by

1 M2 - 1-8
. E— | e T2
Toyn ) = 77178 G‘* b )(1 ‘¥ )* e
“S\}T‘ (7.4)
Of particular importance to us is the heavy traffic
limit of the delay expression given earlier with the

TDYN ]+ a (7.3)

optimized o; this yields éi?Z(lws)TDYN(S)z[1+VfM+2)7B]2,

We can now extend our earlier table to include the
limiting form for Mggg for this dynamic scheme; we see
that its behavior does not depend upon a at all and be-
haves very well as the message length b increases. In
particular, this, dynamic scheme will have a limiting
value which is superior to MSAP so long as

a>ag§2V{M+2)/b}(M«l)+[(M+2)/(b(M—l]]. For example,
when M=10 and b=1000 we then require a > .023.

We shall use this scheme in the following section.
Below in fig. 7.1, we graph the function Mgge=
TDYN(S)/TMQD/I(S)=[2(1“5)/(2“8)]TDYN(S) for (M=10,
b=1000), (M=100, b=1000) and (M=1000, b=100). It is
obvious that unless M grows large with respect to b
(i.e., M>>b), then the dynamic access method is quite
excellent.
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Fig. 7.1. Performance of the dynamic
reservation scheme

8. ACHIEVABLE PERFORMANCE

Qur purpose in this section is to display the many
access schemes we have discussed (including the dyna-
mic scheme of the previous section) by plotting Mefg=
TX(S)/TM/D/l(S) as a function of S. With this set of
access schemes, and given the load parameter S, one
can easily determine which among these many multi-
access schemes is best; we simply get the lower enve-
lope of the set of performance functions for a given
value of a. This minimum envelope will always begin
at the value M%“TX(O)/TM/D/I(O) where x varies over
the set of access schemes. At the heavy traffic end,

either MSAP or the dynamic scheme of the previous
section will be optimal, and so we have

1+ a(M~-1) a<a

T (1) 0

Min

T m -
X M/D/1 2
(0 V) s,

where ap is the critical value of a separating the
MSAP and the dynamic schemes, as given in the last
section.

(8.2)

Our results produce the set of curves in figs. 8.1,
8.2 and 8.3 for (M=10, b=1000), (M=100, b=1000), and
(M=1000, b=100), respectively. The minimum envelope
represents performance which one can achieve in a
distributed multi-access computer communication system
for given values of M, S, and a. We note for M large
that the ratio we are plotting departs from the opti-
mum value of 1 in the middle and heavy load regions.
At light loads we need give up no performance since we
use a contention scheme whose price ordinarily is loss
due to collisions; at light loads, however, we have

25 T T T T T T T T T
M= 10
b = 1000
20} 4
csl
PURE . ':W_\w
ALOHA - oE
a = 01
SLOTTED \\\\\
ALOHA
15} S~ B
5
E
FDMA J
10
MSAP a = 1.0
MSAP
a = .10
a = .05
5L a = .01 .
2 TDMA
mM/D/1
DYN
1
0 0.2 0.4 0.6 0.8 1.0
s
Fig. 8.1. Response time ratios (M=10, b=1000)
25 T T T T T T T T T
M= 100
b = 1000
20} CSMA -
i
PURE a = 01~
ALOHA ~_
SLOTTED T
15k ALOHA T a
5
=

Fig. 8.2. Reponse time ratios (M=100, b=1000)



o o et L2070 AL AL LUMEBECSS FIULLLULNEDS

25 T T T T T T T T T
M= 1000
b = 100
PURE
ALOHA B
20~ CSMA
a = .10}
a = .06~—__]
a = 01— ]
]
SLOTTED
ALOHA

\

.
£ DYN ]

\\\\\\;
/

MSAP a=.01

M/D/1

Fig. 8.3. Response time ratios (M=1000, b=100)

few collisions and therefore little loss. At heavy
loads, we also find little loss compared to the opti-
mum value of 1 so long as we use a controlled dynamic
reservation scheme and M/b<<l; here too, the cost of
control which ordinarily is overhead or empty slots,
disappears due to the heavy load.

9. CONCLUSIONS

In this paper we have found it possible to character-
ize the behavior of distributed multi-access computer
communication systems. We discussed the tradeoff
between loss and performance, displayed some known
multi-access schemes and gave reasonable approxima-
tions to their behavior, introduced Me%f which allow-
ed us to reduce the system description to a three-
parameter description, proved that an aBf mix yields
no improvement over the two access schemes being mix-
ed, suggested a dynamic reservation scheme which per-
formed very well at all loads and then finally in the
last section were able to give a minimum envelope
which selected the best known schemes available at
various loads to produce an achievable performance.
Thus we have effectively given an upper bound on de-
lay (i.e., a lower bound on performance); this repre-
sents a loss in performance beyond which one need
never go. It would be interesting to determine the
upper bound on performance (i.e., the minimum loss
which one must give up for any access scheme); such

a bound is currently being worked on. One of the re-
strictive assumptions in this work was that all ter-
minals were within "one hop' of each other, that is,
all terminals could hear each others' transmissions
perfectly. Of course, the more interesting case is
that of a packet radio network in which some of the
terminals are out of range of each other and must
reach across the network by a series of repeaters.
The characterization of loss and performance in such
a network environment has yet to be carried out.

The cost of distributed sources must not only be paid
in broadcast channels such as we have described here,
but must also be paid in packet switching networks
such as the ARPANET in which information regarding
congestion and status is not available immediately,
nor is it available for free. The adaptive routing
algorithms which we often see in such networks repre-
sent the price we must pay both in overhead and delay
and can be characterized in a fashion similar to that
which was reported here.
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